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Cysts in the kidney are among the most common inherited human pathologies, and recent research has uncovered that a defect
in cilia-mediated signaling activity is a key factor that leads to cyst formation. The cilium is a microtubule-based organelle that
is found on most cells in the mammalian body. Multiple proteins whose functions are disrupted in cystic diseases have now
been localized to the cilium or at the basal body at the base of the cilium. Current data indicate that the cilium can function
as a mechanosensor to detect fluid flow through the lumen of renal tubules. Flow-mediated deflection of the cilia axoneme
induces an increase in intracellular calcium and alters gene expression. Alternatively, a recent finding has revealed that the
intraflagellar transport 88/polaris protein, which is required for cilia assembly, has an additional role in regulating cell-cycle
progression independent of its function in ciliogenesis. Further research directed at understanding the relationship between
the cilium, cell-cycle, and cilia-mediated mechanosensation and signaling activity will hopefully provide important insights
into the mechanisms of renal cyst pathogenesis and lead to better approaches for therapeutic intervention.
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Cystic Kidney Disease
The formation of renal cysts is common to a number of

human syndromes, including polycystic kidney disease (PKD),
Bardet-Biedl syndrome (BBS), Meckel syndrome, and nephron-
ophthisis (NPHP) (1). Most prevalent among these disorders is
PKD, which can be inherited as a recessive (ARPKD) or dom-
inant trait (ADPKD). In general, the pathogenesis of these
disorders has been well defined; however, the cellular and
molecular processes that underlie cyst formation and expan-
sion are not understood (2). Through advances in genomics and
computational biology and through research in model organ-
isms, many genes that are associated with cystic kidney disease
syndromes have been identified. Somewhat surprising, the uni-
fying theme that has emerged is that many of the proteins that
are involved in cystic diseases localize to the cilium or to the
basal body at the base of cilia (3,4) (reviewed in references
[2,5–7]).

Cilia
The cilium is a microtubule-based organelle that first was

identified more than a century ago (8); however, until recently,
it has suffered from a severe lack of respect. Mutations that
impair cilia formation or its signaling activity have recently
been shown to have severe consequences for development and
for postnatal tissue physiology (2,9). For example, during de-

velopment, cilia are required for proper left–right axis specifi-
cation, neural tubule closure and patterning, and proper for-
mation of the limbs and long bone (10–13). In addition, cilia
signaling defects in postnatal life cause cystic lesions in the
liver, pancreas, and kidney and result in hydrocephalus, and
they have been associated with mental impairment, obesity,
and diabetes (reviewed in reference [6]).

Cilia extend from the surface of many eukaryotic cells and
can be either motile or immotile, the latter being referred to as
primary cilia. In mammals, motile cilia are normally found in
large groups on the apical surface of epithelial cells, such as
those that line the trachea or that are on ependymal cells of the
brain ventricles (Figure 1A). The role of these cilia in processes
such as mucous clearance and cerebrospinal fluid movement is
well documented. In contrast, the importance of the primary
cilium, which is found as a solitary structure, has gone unno-
ticed despite its presence on nearly every cell in the mammalian
body (Figure 1B). The primary cilium comes in a variety of
forms that have been modified to respond to a cadre of stimuli.
These diverse forms are found on cells of the olfactory epithe-
lium; on rods and cones in the retina, on cells of the renal
tubule; and on mesenchyme, fibroblasts, and neurons. Recent
research has discovered that primary cilia are far from being a
vestigial organelle as once proposed; rather, they function as
critical components of signaling pathways that are involved in
chemo-, photo-, and mechanosensation that allow a cell or an
organism to interact with and respond efficiently to its envi-
ronment. For example, it is now known that cilia are required
for normal responses to hedgehog (Shh and Ihh) and PDGF-A
(13–16). In part, this is due to the localization of transcription
factors, kinases, or receptors that are involved in these path-
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ways in the cilium axoneme. Understanding the multiple func-
tions of cilia will provide important insights into a number of
disease states and developmental defects that are associated
with abnormal regulation of these pathways.

Assembly and Maintenance of Cilia
Cilia are complex structures and are devoid of ribosomes.

The cell must transport proteins that are required for cilia
assembly, sensory perception, and signaling into the cilium,
where they become integrated into the axoneme. This move-
ment of proteins along the cilia axoneme occurs through a
microtubule-based conveying system called intraflagellar trans-
port (IFT; Figure 1D) (17) (reviewed in reference [18]). IFT was
first identified in Chlamydomonas and was subsequently found
to be conserved in other ciliated eukaryotes (17,19,20). The
proteins that are involved in cilia formation concentrate around
the basal bodies, where they assemble into complexes called
IFT particles. These particles are transported up the cilium by a
heterotrimeric kinesin (kinesin-II complex: Kif3a, Kif3b, and
KAP) (17). Retrograde transport back to the basal body is

mediated by a cytoplasmic dynein motor protein. One function
of the IFT particle is to carry cargo, such as receptors and
channels, and structural proteins into the cilia axoneme, as well
as to deliver signals that emanate from the cilia into the cyto-
plasm in response to external environmental stimuli (21) (re-
viewed in reference [22]). This was recently demonstrated in
the case of the transient receptor potential vanilloid channels
OSM-9 and OCR-2 in the cilia of sensory neurons in C. elegans.
By contrast, IFT did not seem to be involved in movement of
PKD-2 in these cilia (23).

Cilia and Cell-Cycle Regulation
The cilium is assembled during interphase of the cell cycle

and originates from the basal body. The basal body is com-
posed of nine triplet microtubules that are assembled into an
elaborate barrel-like structure (Figure 1C) (24). The basal body
is also known as the centriole that when surrounded by a dense
matrix, called the pericentriolar material, forms the centrosome
and functions as a microtubule organizing center during mi-
totic division. This close association between the cilia and the
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Figure 1. (A) Scanning electron micrograph of motile cilia located on the ependymal cells that line the brain ventricles. Insert shows
higher magnification of motile cilia. (B) Immunofluorescence micrograph of primary cilia (green) located on isolated renal tubule.
Nuclei are shown in blue. Insert is a scanning electron micrograph looking into a renal tubule. (C) Architecture of cilia (primary
and motile) and the basal body. (D) Intraflagellar flagella (ciliary) transport along the axoneme. Anterograde movement of the
intraflagellar transport (IFT) particle is mediated by a heterotrimeric kinesin (kinesin-1) complex, whereas retrograde transport is
mediated by a cytoplasmic dynein.
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centrosome has led to the speculation that the cilium has a role
in regulating the cell cycle. In other words, as long as the cell
has a cilium, it is unable to proceed through mitosis until the
cilium is resorbed, freeing up the centrioles for cell division.
This is supported by the recent association of cilia proteins with
cancer and by the proliferative phenotype seen in cystic kidney
diseases that result from disruption of several cilia-localized
proteins (25–29).

Alternatively, recent data have raised the possibility that the
IFT proteins play a more direct role in regulating proliferation
independent of the cilium. Studies by Robert et al. (30) have
demonstrated that the IFT protein IFT-88/polaris localizes to
the centrioles throughout the cell cycle and that small interfer-
ing RNA–mediated knockdown of IFT-88/polaris promotes
cell-cycle progression to the S and G2/M phases with an in-
crease in proliferation. In contrast, overexpression of IFT88/
polaris was found to interfere with G1-S transition, leading to
apoptotic cell death. Their data further revealed that IFT-88/
polaris bound to Che-1, an Rb-interacting protein that inhibits
the growth-suppressing function of Rb. Defining how the IFT
proteins are involved in cell-cycle regulation and the connec-
tion with cilia will hopefully result in a better understanding of
the molecular mechanism that drives the proliferative pheno-
type in diseases such as these renal cystic disorders.

Cilia Architecture
At the distal end of the basal body just before the start of the

cilia axoneme are the terminal plate and transition fibers (Fig-
ure 1C) (24,31) (reviewed in reference [9]). Although little is
known about the composition of these structures, they are
thought to function as a gatekeeper to regulate protein entry
into the cilium. Although the cilia membrane is contiguous
with the plasma membrane, its composition is distinct, and
protein entry into the ciliary membrane domain is tightly reg-
ulated. Several key signaling proteins have been localized to
this organelle, including channels such as transient receptor
potential vanilloid 4; the cystic kidney disease–associated pro-
teins polycystin-1 and -2; and receptors for somatostatin (SSTR-
3), serotonin (HT-6), angiopoietin (Tie-1 and Tie-2), hedgehog
(smoothened), and PDGF (PDGFR�) (32–36). Although the mo-
lecular mechanism that directs these proteins into the cilia is
unknown, the current model predicts that they dock with the
terminal plate and transition fibers and are loaded onto the
transport machinery for delivery into the cilium. Several stud-
ies have identified cilia targeting domains. This has been done
for polycystin-2 and the odorant responsive cyclic nucleotide-
gated channel CNGB1b, both of which require a RVXP motif for
cilia localization (37,38). However, analysis of several other cilia
transmembrane proteins indicates that the RVXP motif is not a
universal targeting address (34,37–40).

The typical cilia axoneme that extends from the basal body
consists of nine microtubule doublets. Most motile forms of
cilia also contain a central pair of microtubules (9 � 2 axoneme)
while primary immotile cilia lack the central pair (9 � 0 axon-
eme). The microtubule axoneme serves as a structure for as-
sembly of associated protein complexes that regulate the asym-
metric gliding of the central doublet microtubules to generate

motility. A notable exception to this association between archi-
tecture and motility is the solitary cilium that is found on cells
of the embryonic node (node cilia). The node is an organizing
center that is required for establishing embryonic body axes
during development, and loss of these node cilia results in
randomized left–right body specification.

In addition to the 9 � 0 and 9 � 2 microtubule-based archi-
tecture in the axoneme, an elaborate structure can be seen by
electron microscopy at the tip of many cilia (Figure 1C) (41).
Although the importance of this machine remains unknown,
the finding that cilia length is controlled by the addition or
removal of tubulin at the cilia tip and that several proteins
involved in transcriptional responses concentrate in this region
suggest a role in regulating cilia signaling activity (15,20). This
may have implications in cystic kidney disease pathogenesis
because excessively long cilia or the absence of cilia has been
associated with cyst development (42–45).

Primary Cilia on Renal Epithelium and
Cystic Kidney Diseases

In the kidney, primary cilia extend off the apical surface of
the epithelium into the tubule lumen and are present on most
cells of the nephron (Figure 1B). These cilia were thought to be
of minimal importance for renal development. However, sev-
eral studies in model organisms, some of which paradoxically
lack kidneys, led to an increase in clinical and basic research
directed at understanding the function of the renal cilium (re-
viewed in references [2,6,7]).

In one of these studies, Barr and Sternberg (46) revealed that
the homologs of polycystin-1 and -2, which are involved in the
dominant forms of PKD (ADPKD) in humans, localize to cilia of
sensory neurons of C. elegans. This has also been shown for the
human and mouse homologs (35,47). Loss of the polycystins in
C. elegans did not disrupt cilia formation but rather altered
behavioral responses that require cilia function. At approxi-
mately the same time, several groups that were working in
Chlamydomonas, C. elegans, and mice uncovered that the cystic
renal pathology in the Oak Ridge Polycystic Kidney mouse
(Tg737orpk) was due to mutations in a protein called IFT88 (also
known as Tg737, polaris, or OSM-5) (423–44,48). This protein is
required for cilia formation and functions as a component of the
IFT particle. The importance of cilia for normal renal function
and in cystogenesis was further supported by disrupting KIF3a
(IFT-associated kinesin motor) specifically in the mouse kidney
and by antisense morpholino oligonucleotide–mediated knock-
down of IFT gene expression in Zebrafish (49,50).

Although these studies suggest cilia are important for normal
maintenance of renal physiology, the role of the primary cilium
and its relationship to the mechanism of cyst formation remains
poorly defined. Several studies have begun to address this
issue. Praetorius and Spring (51,52) demonstrated that renal
epithelium responds to fluid flow–mediated deflection of the
cilia axoneme by increasing intracellular Ca2�. This calcium
signal is distinct from mechanical stress that is sensed by the
plasma membrane because removal of the cilium abolished the
flow response. Furthermore, Nauli et al. (53) revealed that this
flow response required the function of the polycystins, which
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localize in the cilium. Similar defects were reported by Liu et al.
(54) in perfused tubules that were isolated from Tg737orpk mu-
tants. Although calcium is a widely known second messenger,
the downstream effects of this signal and the importance for
cyst development are unknown.

In addition to functioning as a mechanosensor, deflection of
the cilia axoneme and the polycystins has effects on gene ex-
pression (55,56). In the presence of normal flow conditions,
polycystin-1 remains in the cilia in association with STAT6 and
p100. However, under nonflow conditions, the C-terminal tail
of polycystin-1 is proteolytically cleaved and translocates to the
nucleus with STAT6 to activate the AP-1 pathway (55). As with
the calcium response, the downstream targets of this translo-
cation event that are important in cyst development and renal
cell function are unknown.

Another role of cilia and polycystin-1 was proposed by Shil-
lingford et al. (57). Their studies found that polycystin-1 func-
tions to regulate activity of mammalian target of rapamycin
(mTOR), a protein with essential roles in protein translation,
cell growth, and proliferation (58). In cystic epithelium, mTOR
activity was markedly elevated. Furthermore, treatment of ro-
dent PKD models with rapamycin, an inhibitor of mTOR, at-
tenuated the renal cystic pathology. According to this model,
the disruption of cilia or mutations in polycystin-1 result in loss
of a polycystin-1/mTOR inhibitory complex in the cilium,
which in turn leads to increased proliferation and cyst devel-
opment.

Another model that involves cilia and PKD was proposed by
Fischer et al. (59). In these studies, they demonstrated that
defects in fibrocystin, a ciliary protein that is disrupted in
human ARPKD, was associated with alteration in the orienta-
tion of the mitotic spindle relative to the axis of the tubule.
During normal tubule growth, the mitotic spindle of dividing
cells aligns with the axis of the nephron; however, in cells with
mutations in Pkhd1 (encodes fibrocystin) as well as Hnf-1�, the
spindle fails to orient correctly. This altered orientation of cel-
lular division results in expansion of the tubule diameter (i.e.,
cyst formation) rather than increased nephron length. The role
that cilia may play in regulating mitotic spindle orientation has
not been fully explored.

Cilia and Non-PKD Forms of Cystic Kidney
Disease

Multiple proteins whose functions are disrupted in non-PKD
(not affecting polycystin-1, polycystin-2, or fibrocystin) forms
of renal cystic diseases have also been reported in the cilium or
at the basal body at the base of the cilium (reviewed in refer-
ences [60,61]). The function of these proteins with regard to cyst
development is still being determined, but, in general, muta-
tions in these proteins do not seem to have major effects on cilia
morphology. Included in this class are several of the proteins
that are involved in BBS, Meckel syndrome, and NPHP.

BBS is a rare, genetically heterogeneous group of disorders
with a combination of pathologies, including obesity, retinal
dystrophy, polydactyly, mental retardation, and cysts in the
kidney (BBS [MIM 209900]). Twelve genes (BBS1 through 12)
that are involved in BBS have been identified, and, in many

cases, the corresponding proteins have been localized to the
cilia axoneme or basal body (61–63). In most cases, the function
of the BBS proteins remains elusive; however, analyses of BBS-7
and BBS-8 in C. elegans revealed they have a role in regulating
IFT movement along the cilia axoneme (64).

NPHP is also a heterogeneous group of diseases that result
from mutations in six or more genes (nphp1 through 6) (65–67).
Collectively, the NPHP proteins are referred to as nephro-
cystins, and data in mammalian systems suggest that they
function as part of a complex. Recently, these proteins were
localized to the cilium or the basal body (68,69). In the case of
NPHP-1, this localization depends on its ability to interact with
the phosphofurin acidic cluster sorting protein-1, which is reg-
ulated by the phosphorylation of NPHP1 by casein kinase 2
(70).

The function of the NPHP proteins is uncertain, but data
suggest that they are involved in the formation of signaling
complexes. In the cases of NPHP-2 (inversin), one function is
regulating the choice between noncanonical (�-catenin inde-
pendent) and canonical (�-catenin dependent) Wnt signaling.
In the kidney, canonical Wnt signaling prevails in the develop-
ing nephron, whereas noncanonical signaling is more impor-
tant for tubular structure maintenance (71–73). NPHP-2 (inver-
sin) localizes to the cilia/basal body and seems to function as a
molecular switch to downregulate canonical Wnt signaling
(74). Because ectopic activation of �-catenin is known to cause
cyst formation, it is possible that dysfunction of NPHP-2 would
lead to persistent activation of the canonical pathway and thus
�-catenin–induced cystogenesis (75).

Additional insight into the role of the NPHP proteins has
been derived from simpler model organisms; nphp-1 and nphp-4
homologs have been identified in C. elegans. It is interesting that
mutations in these genes in C. elegans did not disrupt cilia
formation but did cause behavioral defects that are typical of
those that are seen in mutants that lack cilia-mediated signaling
activity (67,69). As for the mammalian proteins, the C. elegans
NPHP proteins function as part of a complex as evidence by the
fact that disruption of NPHP-4 causes the delocalization of
NPHP-1 from the base of the cilium (69).

Cilia and the Extrarenal Pathologies that Are
Associated with PKD

In addition to renal cysts, humans and mouse models of PKD
exhibit pathologies in tissues other than the kidney (60,76–78).
In human PKD, the most commonly affected tissues are the
liver and the pancreas, along with vascular abnormalities that
involve brain aneurysms. Whether these pathologies are caused
by cilia-mediated signaling defects remains to be fully ex-
plored; however, this seems likely in light of the systemic
nature of the disease seen in the Tg737orpk hypomorphic mutant
(6,79). The partial loss of IFT and cilia function in these mice
results in cyst formation in the liver along with bile duct hy-
perplasia and severe pancreatic defects (80,81).

Although the function of the primary cilium in bile ducts and
its relationship to pathologies in PKD is not understood, recent
studies by Masyuk et al. (82) demonstrated that the polycystins
localize to the primary cilium of cholangiocytes and that the
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cilium functions as a mechanosensor, as observed in the kid-
ney. They further showed, using microperfused intrahepatic
bile ducts, that luminal flow increased intracellular calcium and
also repressed cAMP levels. The decrease in cAMP is mediated
through calcium inhibition of adenylyl cyclase 6, which is also
present in the cilium. These findings are intriguing because
intracellular cAMP levels are markedly elevated in cystic renal
epithelium in human PKD as well as in mouse models, in which
cilia or polycystin function is abrogated (83–86). Furthermore,
in contrast to normal renal cells, cAMP acts as a mitogen in
PKD epithelium, which can be inhibited by calcium. In addi-
tion, reduction of cAMP levels in cystic kidney disease mouse
models using vasopressin receptor 2 antagonists greatly retards
cyst formation or progression (83,86). Together, these findings
provide insights into the mechanism behind the proliferative
phenotype in PKD renal epithelium, where loss of the flow-
induced calcium signal and subsequent increase in cAMP lead
to the proliferative response to cAMP (87,88).

Although not a feature of human PKD, defects in the poly-
cystins in mice also result in developmental abnormalities.
Most notable are the random specification of the left–right body
axis (situs inversus or heterotaxia) in mice with mutations in
pkd-2 and skeletal defects in pkd-1 mutants (89,90). These phe-
notypes are also observed in the IFT mutants such as the Tg737
null mice (91). One of the current models suggests that poly-
cystin-2, located in the cilia axoneme, is required to sense fluid
movement over the surface of the embryonic node, similar to
that proposed in the kidney (90,92). This is thought to cause an
asymmetric calcium signal that establishes the left and right
body axis. However, it should be noted that several other
models have been put forth to explain the role of cilia in
establishing the body axis and that true mechanisms have not
yet been firmly established (93,94).

Conclusions
Research conducted during the past decade has led to the

discovery that defects in proteins that localize to cilia or the
basal body are primary contributors to renal cyst development.
Furthermore, these studies have uncovered a role for the pri-
mary cilium as a mechanosensor in a number of tissues and are
providing important insights into the molecular and cellular
mechanism that lead to cystogenesis. Primary cilia on tubule
epithelia are ideally positioned to receive extracellular stimuli
and for transduction of these signals into the cell to elicit
responses. The cilium extends into the lumen of tubules away
from the cell’s immediate surface to evaluate changes in the
cell’s environment. The cilium also has a relatively large mem-
brane-to-cytosol ratio that facilitates close association among
receptors, channels, and the downstream signaling machinery
in addition to permitting rapid changes in second messenger
concentrations. Finally, current data suggest that protein entry
into the cilium is under regulatory control, making this or-
ganelle a specialized domain for controlling sensory responses.

More recent data have suggested an alterative role for an IFT
protein that is distinct from that in cilia formation. These new
findings suggest that the IFT proteins may be directly involved
in regulating cell-cycle progression. Such a role for the IFT

proteins could help to explain the proliferative phenotype that
is associated with cystic kidney disorders.
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